Potřebujeme váš souhlas k využití jednotlivých dat, aby se vám mimo jiné mohly ukazovat informace týkající se vašich zájmů. Souhlas udělíte kliknutím na tlačítko „OK“.
Standard Test Method for Particle Size Distribution of Catalytic Materials by Laser Light Scattering
Přeložit název
NORMA vydána dne 15.5.2020
Označení normy: ASTM D4464-15(2020)
Datum vydání normy: 15.5.2020
Kód zboží: NS-994973
Počet stran: 5
Přibližná hmotnost: 15 g (0.03 liber)
Země: Americká technická norma
Kategorie: Technické normy ASTM
Keywords:
catalyst, catalyst carrier, Fraunhofer Diffraction, laser light scattering, Mie Scattering, particle size distribution,, ICS Number Code 19.120 (Particle size analysis. Sieving)
Significance and Use | ||||||||||||
5.1 It is important to recognize that the results obtained by this test method or any other method for particle size determination utilizing different physical principles may disagree. The results are strongly influenced by physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense and should not be regarded as absolute when comparing results obtained by other methods. Particularly for fine materials (that is, average particle size < 20 μm), significant differences are often observed for laser light scattering instruments of different manufacturers. These differences include lasers of different wavelengths, detector configuration, and the algorithms used to convert scattering to particle size distribution. Therefore, comparison of results from different instruments may be misleading.3 5.2 Light scattering theories (Fraunhofer Diffraction5.3 This test method can be used to determine particle size distributions of catalysts, supports, and catalytic raw materials for specifications, manufacturing control, and research and development work. 5.4 For fine materials (that is, average particle size < 20 μm), it is critical that Mie Scattering Theory be applied. This involves entering an “optical model” consisting of the “real” and “imaginary” refractive indices of the solid at the wavelength of the laser. The “imaginary” refractive index is also referred to as the “absorbance,” as it has a value of zero for transparent materials such as glass beads. For common materials and naturally occurring minerals (for example, kaolin), these values are known and published, and usually included in the manufacturer’s instrument manual (for example, as an appendix). For example, kaolinite measured at 589.3 nm has a “real” refractive index of 1.55. The absorbance (imaginary component) for minerals and metal oxides is normally taken as 0.001, 0.01 or 0.1. Many of the published values were measured at 589.3 nm (sodium light) but often values at other wavelengths are also given. Extrapolation, interpolation, or estimation to the wavelength of the laser being used can therefore be made.6 |
||||||||||||
1. Scope | ||||||||||||
1.1 This test method covers the determination of the particle size distribution of catalyst, catalyst carrier, and catalytic raw material particles and is one of several found valuable for the measurement of particle size. The range of average particle sizes investigated was from 1 to 300 μm equivalent spherical diameter. The technique is capable of measuring particles above and below this range. The angle and intensity of laser light scattered by the particles are selectively measured to permit calculation of a volume distribution using light-scattering techniques. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
||||||||||||
2. Referenced Documents | ||||||||||||
|
Chcete mít jistotu, že používáte pouze platné technické normy?
Nabízíme Vám řešení, které Vám zajistí měsíční přehled o aktuálnosti norem, které používáte.
Chcete vědět více informací? Podívejte se na tuto stránku.
Poslední aktualizace: 22.12.2024 (Počet položek: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.