Potřebujeme váš souhlas k využití jednotlivých dat, aby se vám mimo jiné mohly ukazovat informace týkající se vašich zájmů. Souhlas udělíte kliknutím na tlačítko „OK“.
Standard Test Method for Young's Modulus, Shear Modulus, and Poisson's Ratio for Glass and Glass-Ceramics by Resonance
Přeložit název
NORMA vydána dne 1.6.2021
Označení normy: ASTM C623-21
Datum vydání normy: 1.6.2021
Kód zboží: NS-1029874
Počet stran: 7
Přibližná hmotnost: 21 g (0.05 liber)
Země: Americká technická norma
Kategorie: Technické normy ASTM
Keywords:
glass, Poisson&apos,s ratio, resonance, shear modulus, Young&apos,s modulus ,, ICS Number Code 81.040.30 (Glass products),81.060.01 (Ceramics in general)
Significance and Use |
4.1?This test system has advantages in certain respects over the use of static loading systems in the measurement of glass and glass-ceramics: 4.1.1?Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture. 4.1.2?The period of time during which stress is applied and removed is of the order of hundreds of microseconds, making it feasible to perform measurements at temperatures where delayed elastic and creep effects proceed on a much-shortened time scale, as in the transformation range of glass, for instance. 4.2?The test is suitable for detecting whether a material meets specifications, if cognizance is given to one important fact: glass and glass-ceramic materials are sensitive to thermal history. Therefore the thermal history of a test specimen must be known before the moduli can be considered in terms of specified values. Material specifications should include a specific thermal treatment for all test specimens. |
1. Scope |
1.1?This test method covers the determination of the elastic properties of glass and glass-ceramic materials. Specimens of these materials possess specific mechanical resonance frequencies which are defined by the elastic moduli, density, and geometry of the test specimen. Therefore the elastic properties of a material can be computed if the geometry, density, and mechanical resonance frequencies of a suitable test specimen of that material can be measured. Young's modulus is determined using the resonance frequency in the flexural mode of vibration. The shear modulus, or modulus of rigidity, is found using torsional resonance vibrations. Young's modulus and shear modulus are used to compute Poisson's ratio, the factor of lateral contraction. 1.2?All glass and glass-ceramic materials that are elastic, homogeneous, and isotropic may be tested by this test method.2 The test method is not satisfactory for specimens that have cracks or voids that represent inhomogeneities in the material; neither is it satisfactory when these materials cannot be prepared in a suitable geometry. Non-glass and glass-ceramic materials should reference Test Method E1875 for non-material specific methodology to determine resonance frequencies and elastic properties by sonic resonance. Note 1:?Elastic here means that an application of stress
within the elastic limit of that material making up the body being
stressed will cause an instantaneous and uniform deformation, which
will cease upon removal of the stress, with the body returning
instantly to its original size and shape without an energy loss.
Glass and glass-ceramic materials conform to this definition well
enough that this test is meaningful.
Note 2:?Isotropic means that the elastic properties are the
same in all directions in the material. Glass is isotropic and
glass-ceramics are usually so on a macroscopic scale, because of
random distribution and orientation of crystallites.
1.3?A cryogenic cabinet and high-temperature furnace are described for measuring the elastic moduli as a function of temperature from 195 to 1200 ?C. 1.4?Modification of the test for use in quality control is possible. A range of acceptable resonance frequencies is determined for a piece with a particular geometry and density. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each piece need not be determined as long as the limits of the selected frequency range are known to include the resonance frequency that the piece must possess if its geometry and density are within specified tolerances. 1.5?The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6?This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7?This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. |
Poslední aktualizace: 22.12.2024 (Počet položek: 2 217 000)
© Copyright 2024 NORMSERVIS s.r.o.