Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi
Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi
Date of Issuance: August 15, 2005

The 2004 edition of this Standard is being issued with an automatic addenda subscription service. The use of addenda allows revisions made in response to public review comments or committee actions to be published as necessary. This Standard will be revised when the Society approves the issuance of a new edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Interpretations are published on the ASME Web site under the Committee Pages at http://www.asme.org/codes/ as they are issued.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Three Park Avenue, New York, NY 10016-5990

Copyright © 2005 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.
The purpose of this Standard is to provide guidance and recommendations in the applications of fluid flow in pipes using orifice, nozzle, and venturi meters. This Standard was prepared by MFC Subcommittee 2 of the American Society of Mechanical Engineers Standards Committee on Measurement of Fluid Flow in Closed Conduits.

As of the publication of this Standard, differential producers are the single most-used method of full-pipe flow measurement in the United States and worldwide. By utilizing simple physical laws, differential-producing flow meters are capable of providing reliable flow measurement within established uncertainty bands.

The first edition of this Standard was approved by the ASME MFC Standards Committee in 1985. The MFC Standards Committee approved the second edition of this Standard in 1989, and reaffirmed it in 1995. This revision, approved by the MFC Standards Committee in 2004, includes extensive changes to content and format from the MFC-3M–1989 (R1995) edition.

Given the global nature of the flow measurement market, this Standard is as consistent and technically equivalent with ISO 5167 as practical. There are, however, technical and editorial differences made in consideration of recent technical insights and operational practices common in the United States.

This Standard provides information in both SI (metric) units and U.S. Customary units. For reference, U.S. Customary units are shown in parentheses.

Suggestions for improvement to this Standard are welcome. They should be sent to Secretary, ASME MFC Standards Committee, Three Park Avenue, New York, NY, 10016-5990.

This edition of the Standard was approved by the American National Standards Institute on April 30, 2004.
ASME MFC COMMITTEE
Measurement of Fluid Flow in Closed Conduits

(The following is the roster of the Committee at the time of approval of this Standard.)

OFFICERS

Z. D. Husain, Chair
R. J. DeBoom, Vice Chair
R. L. Crane, Secretary

COMMITTEE PERSONNEL

C. J. Blechinger, Consultant
R. W. Caron, Visteon Corp.
G. P. Corpron, Consultant
R. L. Crane, The American Society of Mechanical Engineers
R. J. DeBoom, Consultant
P. G. Espina, Controlotron Corp.
D. Faber, Badger Meter, Inc.
R. H. Fritz, Lonestar Measurement
F. D. Goodson, Emerson Process
D. C. Wyatt, Wyatt Engineering and Design
Z. D. Husain, Chevron Texaco
E. H. Jones, Jr., Alternate, Chevron Petroleum Technologies
C. G. Langford, Cullen G. Langford, Inc.
W. M. Mattar, Invensys / Foxboro Co.
G. E. Mattingly, National Institute of Standards and Technology
D. R. Mesnard, FMC Measurement Solutions
A. M. Quraishi, American Gas Association
B. K. Rao, Consultant
W. F. Seidl, Colorado Engineering Experiment Station, Inc.
T. M. Kegel, Alternate, Colorado Engineering Experiment Station, Inc.
D. W. Spitzer, Copperhill and Pointer, Inc.
R. N. Steven, McCrometer
D. H. Strobel, Consultant
J. H. Vignos, Consultant
D. W. Spitzer, Copperhill and Pointer, Inc.
R. N. Steven, McCrometer
J. W. Stuart, Stuart Gas Measurement Consulting
S. H. Taha, Experflow Measurement, Inc.
D. E. Wiklund, Rosemount, Inc.

SUBCOMMITTEE 3—PRESSURE DIFFERENTIAL DEVICES

D. C. Wyatt, Chair, Wyatt Engineering
R. L. Crane, Secretary, The American Society of Mechanical Engineers
R. M. Bough, Allison Engine Co.
R. H. Fritz, Lonestar Measurement
F. G. Goodson, Emerson Process
D. R. Mesnard, FMC Measurement Solutions
A. M. Quraishi, American Gas Association
W. F. Seidl, Copperhill and Pointer, Inc.
D. W. Spitzer, Copperhill and Pointer, Inc.
R. N. Steven, McCrometer
J. W. Stuart, Stuart Gas Measurement Consulting
S. H. Taha, Experflow Measurement, Inc.
D. E. Wiklund, Rosemount, Inc.
CORRESPONDENCE WITH THE MFC COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing revisions, and attending committee meetings. Correspondence should be addressed to:

Secretary, MFC Standards Committee
The American Society of Mechanical Engineers
Three Park Avenue
New York, NY 10016-5990

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be published periodically.

The Committee welcomes proposals for revisions to this Standard. Such proposals should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons for the proposal, including any pertinent documentation.

Interpretations. Upon request, the MFC Committee will render an interpretation of any requirement of the Standard. Interpretations can only be rendered in response to a written request sent to the Secretary of the MFC Standards Committee.

The request for interpretation should be clear and unambiguous. It is further recommended that the inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry.
Edition: Cite the applicable edition of the Standard for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for general understanding and use, not as a request for an approval of a proprietary design or situation. The inquirer may also include any plans or drawings that are necessary to explain the question; however, they should not contain proprietary names or information.

Requests that are not in this format will be rewritten in this format by the Committee prior to being answered, which may inadvertently change the intent of the original request.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME Committee or Subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary device, or activity.

Attending Committee Meetings. The MFC Standards Committee regularly holds meetings, which are open to the public. Persons wishing to attend any meeting should contact the Secretary of the MFC Standards Committee.
1-1 SCOPE AND APPLICATION

This Standard specifies the geometry and method of use (installation and operating conditions) for pressure differential devices (including, but not limited to, orifice plates, flow nozzles, and venturi tubes) when installed in a closed conduit running full and used to determine the flow-rate of the fluid flowing in the conduit. This Standard applies to pressure differential devices in which the flow remains subsonic throughout the measuring section and where the fluid is considered as single-phase. The Standard is limited to single-phase Newtonian fluid flow in which the flow can be considered sufficiently free from pulsation effects. It gives information for calculating the flow-rate and the associated uncertainty when each of these devices is used within specified limits of pipe size and Reynolds number.

This Standard covers flow meters that operate on the principle of a local change in flow velocity and/or flow parameters caused by meter geometry, resulting in a corresponding change of pressure between two set locations. Although there are several types of differential pressure meters available, it is the purpose of this Standard to address the applications of each meter and not to endorse any specific meter. The operating principle of a pressure differential flow meter is based on two physical laws: conservation of energy and conservation of mass, realized when changes in flow cross-sectional area and/or flow path result in a change of pressure. This differential pressure, in turn, is a function of the flow velocity, fluid path, and fluid properties.

Included within the scope of this Standard are devices for which direct calibration experiments have been made, sufficient in number and data coverage, to enable valid systems of application to be based on their results and coefficients to be given with known uncertainties. The devices installed in the pipe are referred to as primary devices, primary elements, or simply, primaries. The primary device may also include the associated upstream and downstream piping. The other instruments required for the flow measurement are often referred to as secondary devices or secondaries. For further information on secondary instrumentation, see ASME/ANSI MFC-8M.

The different primary elements covered in this Standard are as follows:

(a) orifice plates (Part 2) that can be used with the following pressure tap arrangements:
(1) flange pressure taps
(2) corner pressure taps
(3) \(D \) and \(D/2 \) pressure taps

(b) nozzles (Part 3), each of which differs in the following shape and position of the pressure taps:
(1) ASME long radius nozzles
(2) Venturi nozzles
(3) ISA 1932 nozzles

(c) ASME venturi tubes (Part 4), also known as Herschel or classical venturi tubes

Part 1 of this Standard contains general material such as definitions, symbols, and principles that apply to all the devices covered in Parts 2, 3, and 4 of this Standard with respect to the flow measurement of any single phase fluid.

This Standard does not apply to ASME Performance Test Code measurements. This Standard does not address those devices that operate on the principle of critical or choked flow condition of fluids. This Standard does not address issues of safety. It is the responsibility of the user to ensure that all systems conform to applicable safety requirements and regulations.

1-2 REFERENCES AND RELATED DOCUMENTS

Unless indicated otherwise, the latest issue of a reference standard shall be used.

ASME B36.10, Welded and Seamless Wrought Steel Pipe
ASME MFC-1M, Glossary of Terms Used in the Measurement of Fluid Flow in Pipes
ASME MFC-8M, Fluid Flow in Closed Conduits—Connections for Pressure Signal Transmission Between Primary and Secondary Devices
ASME PTC 6, Steam Turbines
ASME PTC 19.5, Flow Measurement
Publisher: The American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, Box 2300, Fairfield, NJ 07007-2300